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Various initial-boundary value problems and Cauch problems can be

written in the form gs + av(u) = 0} where ¢;ﬁ + R} is nondecreasing and A A

is the 117£ar generator of ngongly continuous nonexpansive semigroup Léf?i)‘.azt,);uvlz
in an <g?> space._  For jf::?;e' if A = -A (subject, perhaps, to suitable
boundary conditions) we obtaiﬂ equations arising in flow in a porous medium or
plasma physics (depending on the choice of ¢ ) while if A = %; acting in
L1(R) we have a scalar conservation law. 1In this paper we show that if M,
m>0 and mw'z < voy" < uw'z , where v € {1,-1} , then (roughly
speaking), the norm of tdu/dt may be estimated in terms of the initial

data ug in L1. Such estimates give information about the regularity of
solutions, asymptotic behaviour, etc., in applications.

Sside issues, such as the introduction of sufficiently regular approximate
problems on which estimates can be made and the assignment of a precise
meaning to the operator "A¢", are also dealt with. These considerations are
of independent interest.
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conservation laws, nonlinear semigroups

Work Unit No. 1 - Applied Analysis

A

Sponeored by the United States Army under Contract No. DAAG29-80-C-41. This
material is based upon work supported by the National Science Foundation under
Grant No. MCS-7927062.




1 SIGNIFICANCE AND EXPLANATION

P Many models of interesting phenomena yield equations for the evolution of

} s T gse :
{ a system of the abstract form u' + A¢(u) = 0 * where @f>is a nonlinear ,~
% * nondecreasing function and A is an ‘gperator‘f’ E.gs, A may be the J{//QI&L % %;
H ) — ]

% Laplacian (perhaps under boundary conditions) or A may be G%i;:’ while f_psi L
j ) | ‘

: may be a power law, a-1 +« Models like this occur in porous flow,

plasmas and conservation laws. In this work it is shown that a broad class of
such problems are solvable by the nonlinear semigroup theory. The main point,
however, is a “?Egularizinq‘J;ffect which estimates the speed of the system at
time t > 0 by the integral of the initial data. This has consequences for
the regularity of the solutions of concrete problems and their asymptotic

behaviour.

{

Accession For

NTTS  GRARI =
0
0

nTIC TAB
Umsannounced
Justitication |

Ry
Distribug&gg/
Availability Codes
Avall and/or

i .t Dist Special

E

TN

s

The responsibility for the wording and views expressed in this descriptive
F summary lies with MRC, and not with the authors of this report.




ir e T T P T g

Lt .

REGULARIZING EFFECTS FOR uy + Ap{u) =0 IN L.
Michael G. Crandall and Michel Pierre
Introduction.

when applied to a solution u of the egquation

(0 u - 80w =0 40 (0,®) x R

one of the main results of this paper implies that

(2) [ tugtt,xfax < %,{ {u(0,x) {ax
R“ RN

provided ¢ is nondecreasing, ¢(0) = 0 and has the property
#Hr) ¢v(r)

2
(¢¥'(x))
Indeed, when (3) holds so does (2) and C depends only on the structure constants m

<M a.,es. reER for v=1 or v =-=1,

(3) 0<m<K v

and M of (3). Note that the initial data u(0,x) need only belong to L’(IF).
The validity of the 'L‘-regularizinq' inequality (2) depends strongly on the properties of
the operator "=Ay"™ in the space L1(IP). These properties are in fact enjoyed by a large
class of operators of the form Ay where ¢ is as above and A is a linear operator in
an L1 space. Indeed, it is enough that =-A be the infinitesimal generator of a strongly
continuous nonexpansive semigroup e tR 4n L1 such that 0 < u, <1 a.e. implies
0 < e-tluo €1 a.e. (d.e., et e submarkovian). Thus the results apply to (1) set
in a bounded domain with linear homogeneous boundary conditions of Dirichlet or Neumann
type imposed on ¢(u). Similarly, -A can be replaced by more general elliptic operators
and we can, for example, also exhibit the conservation law
4) u - ¥(w), =0 on (0,®) xR
as an example of the theory developed here.

The estimate (2) is already known if ¢(r) = r. In this event (1) is the linear heat
equation and (2) says that -A generates an analytic semigroup in L‘(IN), which is

obvious from the solution formula. There has not beer much success in developing a general

nonlinear analogue of the linear idea of an analytic semigroup and only a few nonlinear

Sponsored by the United States Army under Contract No. DAAG29-80-C-004l1. This material is
based upon work supported by the National Science Foundation under Grant No. MCS~7927062.
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results with estimates like (2) have been found. We refer to (7] for more comments in this

direction as well as to {4) where a large class of homogeneous nonlinearities are exhibited

which permit estimates like (2). The main contribution of this paper is the introduction
of interesting new classes of such nonlinear examples.

If w(r) = |r|%signr with a > 0, then ¥(r)¥"(r)/(¢'(x))? = (a=1)/a and (3) holds
with m= {a=1]/a = M and v = gign{a=1) if a # 1. In this case (1) is covered by the
results of (7). Note that we exclude «a = {1 here. As mentioned in (7], this is not
surprising since the proof of our results also applies to (4) and no estimate like (2)
holds if ¢(r) = r in (4).

We also show in this paper that nonnegative solutions of
(s) L4 avtu) =0,

(vhich is given a precise sense in the text) satisfy a pointwise estimate

u
(6) u, > =C ry

for the class of operators Ay where A is as above and the nondecreasing function ¢

satisfies v(0) = 0 and

(7) 0 <m¢«< $lr)e" ;) a.e. r>0.
(¢'(r))
It was previously observed by L. C. Evans and one of the authors that (7) implies (6) for ¢

nonnegative solutions of (1). (Pointwise estimates like (6) are enjoyed only by
nonnegative solutions.) For ¢(r) = ¥, o >0, this was first shown in the case of
(1) by Aronson and Benilan (1] while [7] covers a general class of homogeneous
nonlinearities. The paper [8) covers (1) for a guite general class of nonlinearities
(considerably more general than (7]), but this result requires extensive exploitation of
special properties of the Laplace operator. Here our result is more abstract, in the
spirit of (7).

The first section is devoted to the abstract results. As usual, the problem of
defining "Av® \and hence (5)) in a precise sense must be disposed of. Similarly, the
appropriate meaning must be given to (2), its abstract analogus, and (6). These matters
and the approximations introduced in the proofs of the main results are of substantial
independent interest. Several proofs of results used in the sequel are collected in the

Appsndix.

=
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Section 1.

Throughout this section & dsnotes 8 0o-finite measure space with the measurs denoted
by "meas”. The norm of L"(n) is denoted by 1 lp « The integral of f ¢ L‘(R) over &
measurable 0 c f is written either as f £ or f fdx .

Recall that a (possibly nonlinear) ngpping A?D(A) c€ X+ X in a Banach space X is

1 is a nonexpansive mapping of R(I+AA) (the range

accretive 1f for each A > 0 (I+AA)~
of I+AA] into X . If A is accretive and R(I+AA) =X for A > 0 (equivalently,
R(I+A) = X), then A is m-accretive. If A is linear and densely defined, then A is m~
accretive if and only if -A is the infinitesimal generator of a (linear) strongly
cuntinuous nonexpansive semigroup et on x . More generally, if A is accretive and
R(I+AA) 2 D(A) for A > 0 it determines a (in general, nonlinear) strongly continuous
nonexpansive semigroup e A on D(A) . (We use the notation %A in the linear and
nonlinear cases.) See, e.g. [2]',‘[6], 9.

VWe assume a densely defined linear operator A:D(A) c L‘ ) + !.' () is given which

ratizlles
(at) A is m-accretive in L‘(n)
and
I£A >0, fet.‘(n), a,beR and a< £ <b a.e.,
(A2)

then a < (I#AA)"'£< b a.e.
S8ince A is linear, densely defined and m—accretive, (A2) is equivalent to
0€£¢1m=>0¢e™rc1. (Actually, (A1) and (A2) imply D(A) is dense ([10]).)
It was proved in (5] that for linear m-accretive A's as above, (A2) is equivalent to
If B is a maximal monotone graph in R x R with 0 € 8(0) , u € D(A),
(a3) A etP@), 1<p<w,ver? PT1g , wx) €Bluix)) a.e. then
| vix)au(x)ax > 0 .
The proper interpretation of "gv" is discussed next., Set

% = {#R+ R; ¢ is continuous, nondecreasing and ¢(0) = 0},

Por any ¢ € Po and B:D(B) sl.,(m + L‘(n) the operator By in L‘(m is first defined

in the obvious way:

-3-
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p(Be) = {u er'(2); ¢(u) ¢ D(BI}
(1.1)

Wwu € D(B¥) , B¥(u) = Blv(u)).

The proposition below summarizes some results which follow easily from the results and
arguments of, e.qg., [5] .
Proposition 1. Let A be linear, densely defined and satisfy (A1), (A2). Let ¥ € P,.

Then:

(1) Ay 1is accretive in L‘(n) .

(i1) Por each € >0 and A > 0, €I + A(I+\A)""

satisfies (A1), (A2) . t
(iii) Por each € > 0 , (eI+A)y 1is maccretive in L1(n) .

{iv) For A >0, (:H-)w;).‘l is an order-preserving nonexpansive mapping of

R(I+\A¢) into L'(R). Moreover, f ¢ R(I+AA¥) a,b € R and a< £4 Db
i a.e. implies a < (I+M¢)-1£ <D a.e.
(v) lulp < I(J:-&J;A@)(\a)lp for u € D(A¢), 1 € p< =,
The main omission of Proposition 1 is the assertion that Ay is m-accretive. 1In

i general this fails even if A satisfies (A1), (A2). However, the pair (A,¢) typically

[ determines an m-accretive operator Aw which extends Ay and (A,¢) always determines an N
accretive operator A 2 for which R(I+AA V) > I.‘(Sl)*' as is stated in the next proposition. ;

. v
Proposition 2. lLet A be linear, densely defined and satisfy (A1), (A2). Let

¥ € Po and assume at least one of the conditions:

(1) ¢ is strictly increasing,
(14) Fry > 0, K such that |v(x)| < Klr| tfor |x| < Ty s ]
or

(144) meas () < » ,
Then there is an m~accretive operator A‘p in L1 () which extends Ay such that for

every A > 0 and f ¢ x.‘m)

(1.2) lim (I+A(eI+n)g)”!

€40

-1 )
f= (I+XAv) £. :

R

-4~
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Moreover, for every ¢ ¢ % there exists an accretive operator A, in L’(Q) which

L4
extends A¥ such that (1.2) holds for every A > 0 and f ¢ L‘(n)+ - {f € L‘(ﬂ);f >0} .
Proposition 2 is tangential to our main concerns and is discussed and proved in the
Appendix.
Each v we deal with will allow the application of Proposition 2, and we take Aw to

be the correct interpretation of A¢ in (5). Solutions of (5) are then understood in the
-tA

sense of nonlinear semigroup theory ~ i.e. u(t) = e ¢u(0) « An important fact for our

presentation is the:

Convergence Theorem: Let G, , n= 1,2,°+*,® be a sequence of accretive operators in

L'(®) such that D(G_) > D(G,) and R(INAG ) > D(GJ for n=1,2,+*+,= and

A>0. Assume
lim (1436 )7 e ~ (1o ) 't
e

for f € D(G_) and A>0. Then whenever fn € D(Gn) and fn + £, € D{G,) we have

lim e
e 1
uniformly for bounded ¢ > 0 . (All convergences are in L (). )

This theorem is a special case of known results (see, e.g., [6] for references). It

-tA
follows from Proposition 1 and the convergence theorem that 1lim e-t(CI+A)¢he = e wu
e+0
uniformly for bounded t > 0 whenever u, € D((eI+A)¥) converges to u ¢ D(Av)‘
~tA

Our main goal is to estimate the speed of the semigroup e ¢ generated by -Av under
suitable assumptions on ¢ . We will prove:

Theorem 3. Let A be linear, densely defined, satisfy (A1), (A2) and ¢ ¢ P, . Assume

(1.3) v ¢ c'(®\M0}), ¢ 1is locally Lipschitz on R\0} ,
and
(1.4) There exists m, M > 0 and v € {-1,1} such that

n(v'(r))2 <ve(r)e™(r) < M(p*'(r))2 a.e. re R

-t

Then ¢¥ satisfies either (i) or (ii) of Proposition 2 and for S(t) =~ e .

\lo € D(Aw) .

STy "

I o pend 1 AR

B rag




p
Is(t+h)u, = S(t)u. b
(1.5) lim e 2l Sy, |
awo . 3
where C = 2(M+1)(m+2M)/m? . p
i
Remarks :
5
{a) The assumption (1.4) is a natural generalization of the condition w«p"/w')z =C#0 :
i

which is the homogeneous case treated in [7]. Note that v = 1 and v = =1  correspond
to quite different behaviours of v . For instance, if v = 1 then ¢ is convex on .
{0,%) while if v = =~1 it is concave.
One can easily see that for ¢ ¢ P, , (1.3) and (1.4) are equivalent to
¢ € C‘l (  {0}), wv/¢' is Lipschitz continuous on R and
(1.6) vem > v(-';—T)' > v
(wvhere ¢/¢' is understood to vanish if ¢(r) = ¢'(r) =0 or r =0),

or
(r + 1-::: W(r)l‘wm (logle(r)! 4if vm= 1) 4is convex and
v 1-vM
(1.7) | x> oo Hetnd (loglw(r)| if vM = 1) .

| is concave on each of (-=,0) and (0,%) .

Note that v = 1 implies m < 1 . Also note that if v = 1 , the convexity implies

fp(r)| < Klrl, K = max(¥'(ry +), ¢'(rg=)}) on Ix[ € ry so Propositin 2(ii) holds,

while if v = =1 either vy =0 on {0,%) or ¢ is strictly increasing by (1.6) and

Propositian 2(i) holds. ;

= —rp———— s an

(B) It would be interesting to know if the existence of the upper bound M in (1.4) is
necessary to have an estimate like (1.5). Our next result shows one needs only m if the
initial data is nonnegative and v = 1 .

Theorem 4. Let A be linear, densely defined, satisfy (A1), (A2) and ¥ ¢ P, . Assume
m>0, m# 1, ve€{-1,1 and

j=
(1.8) r + 1_:'. v(x) VR s convex on (0,%).




~tA

Let A, be as in Proposition 2 and §(t) = e \d . Then for vy >0, u, "

(1.9) t-’vtv/mv(S(t)uo(x)) is nondecreasing a.e. x ¢ .

If algo v =1 (so m< 1), then

s{t+h)u. - s(t)
(1.10) lim 2 B¢ 208 yuy gy -
h+0

Remarks: Notice that (1.9) is a weak formulation of

du 1 pluw)
Vtac > m ¢ (u)

where u = S(t)uge If v = 1, then v¢(u)/¢'(u) < (1 =~ m)u , so we obtain

l-m

% > - -(-l;ll ue This means ¢t + ¢t m s(t)uo is nondecreasing, which may be deduced from

(1.9) directly wvhen Vv = 1,

We begin the proofs of Theorems 3 and 4. While the formal manipulations which are the
basis of the main estimates are quite straightforward, there are considerable difficulties
concerning regularity to be overcome. We use a four-layered approximation process to
dispose of these difficulties. One has been introduced already, namely the approximation
of A\o by (eI+A)¥ « To this we add the regularization of A itself by its Yosida
approximation AA - 1-1(1 - (I+>.A)-1) - A(Iﬂn)-‘ and, in turn, the replacement of ¢ by
its Yosida approximation 'Pq = n-1(1 - (Imw)-1). A fourth approximation process is

is m—accretive, defined on all of L‘(Q) and
1

introduced later. We recall that AX

bounded. Moreover, by Proposition 1, I (I+\a) fllp < llfllp for £ <LP(Q) n L‘(ﬂ) ’

1<p<® and A>0 . Thus A L (@) nzP@) 1 %) o LP(@) ana A, on this domain

A

is accretive and Lipschitz continuous in the LP(Q) norm. The next lemma handles the
problem of passing to the limit in the approximation of ¢ by spa as a + 0 .

Lemma 5. Let ¢ ¢ % ¢ g€ L1(9) nL’(Q), ¢(u0) eL'(ﬂ) . Let £€,A,a >0 , and B =

cI+A)‘. Then the problems
du

(1.11) a t Bwa(u“) =0, “am) =y .
and
(1.12) B, Botu) = 0 u(0) = u

* at ‘ 0’

-7




1,

have unique solutions u , u € W *(10,= ' (@),

Moreover

=u in  c(ro,7):L' @)

(1.13) a

\b |
lim =2 = & 4,

1 1
L (0,T:L (Q)) .
a+d dat at

for every T > 0 .

Proof of Lemma 5. By Proposition 1, Bwa and By are maccretive in L1($2).
Moreover Bv’c + By as a + 0 in the sense (I+).B<pa)—1f > (I+AB¢)_1f for £ ¢ L1(ﬂ),

A>0 . Indeed, if f ¢ L’(Q) and

v+ )\B«pa(va) = f , v+ ABp(v) = f

a
we also have Vo v+AB ¢u(va) - AB wa(v) = AB(g(v) - ¢u(v)). Since Bwa is accretive this
yields

lvu - vl1 < MBlig(v) - cpa(v)l1

T i it e = R L A SR

and the right-hand side tends to O as a + 0 because v(v) ¢ L’(Q), IwPa(v)l < [e(v)i

and gau(v) + yp(v) a.e. by standard properties of the Yosida approximation 9?“ . Let

~tBy TBY

Ta(t) = e and T(t) = e Since Bwq + By, ua(t) = '.l‘a(t:)u0 + T(t)uo- u(t) in

, L‘(ﬂ)) as a + 0 uniformly for bounded t » 0 . Now Bsﬂa is Lipschitz continuous so
u ec(0,):L'@)) ana
a
dua
1 a (t)l1 < IB«pa(uo)I1 for £ 2> 0

by the accretivity of By . As [¢ (u )| € {¢(u )|, B¢ (u ) is bounded in L1(9)
a a 0 0 a 0 du

independently of a > 0 and hence so are dua/dt and \ou(uu) = -8-1(-&_2] bounded in

Moreover

"
0o
Since B enjoys the property (A2) together with A ,

w 1
L (0,=:L {Q)).

-1
(1.14) ¥ (u )axat = é B (ug - u (T))dx.

lua(t)ln < '“o'u « It follows

is bounded in La(ﬂ) uniformly in a, t » 0 and then, by interpolation, in
du

f every Lp(ﬂ). We conclude that af! is bounded in Lm(o,szz(ﬂ)).

that wu(uu)

This together with
1 du L] 2

ua* u in c([0,»):L (R)), shows — € L (0,%:L°(I)) and duq/dt + du/dt weakly in

.14 du

1 L2(0,T:L2(SX)) for each T > 0 . From ¢a(ua) = 3-1(- -;5-) and the boundednesgs of p~!

in L2(S2) it then follows that vpu(ua) + -3-1(3—:) weakly in LZ(O,T:LZ(Q)). Oon

-8~
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the other hand, ¢u(ua) + ¢(u) in measure and so ¢(u) = -B-1(§%), which establishes

(1.12) and its consequence

(1.15) [F] ewaxat ~ [ 87wy - wrh.
0 a Y]
Assume now LN >0 8o U >0 . By (1.14), (1.15) and u *u in C([OI"):L1(H)) we
conclude ¢a(uq) + ¢(u) in measure and
/T 1 eiuoaxat » [T [ e(waxat .
o 8 ¢ ¢ 0 Q ; ;
Since \Oa(uu), ¥u) » 0 this implies %(u“) + ¢(u) in L (0,T:L (R)). If uy is not of

+
fixed sign we may estimate ¢a(uq) by va(v“) < wu(ua) < wa(wa) where v, " Ta(t)uo R

- 1 1
vu Tu(t)( uo) « Since wa(vh) and wa(wa) converge in L (0,T:L ()) and wu(ua)

converges in measure, wa(uc) converges in L1 « By the continuity of B

duu du 1 1
% " Bcp“(uu) + qt in L (0,T:L (8)).

This completes the proof of the Lemma.

The next lemma, which establishes the desired estimates on solutions of (1.12) with a
little extra regularity on ¢ , contains the heart of the proof.
lemma 6. Let ¢ ¢ 15 ’ Yy € 1@ n @) ana v(uo) € L‘(Q) . Let u be the solution

of (1.12).

(1) Let ¢ ec’(m \ {0}) and satisfy (1.4). Then

du C{m,M)
(1.16) L P ry Iuol1

with C(m,M) =~ 2(M+1) (m+2M)/m? .

(11) Let ¥ € C2(0,), ¢/¢' €cC'((0,»)) and satisfy (1.8). Let u > 0 . Then

0
du, _ 1 Auw
dat mt ¢ (u)

(1.17) v

Remarks: If (1.8) is satisfied with v = 1 (and hence m < 1) and if ¢71(0) = [o,rol,

then for r > I,

v
() (z-ro) or zsf;)
v(r)

< (l-m)(z-ro) .

If v=-1, then ry =0 and (v/¢')(0+) =0 , but (v¥/¢v')' 1is not necessarily bounded

in a neighborhood of O . Because of this we impose the extra condition

-9-




(v/¢*) € cY([0,%)) in (41). Note that the stronger condition (1.4) implies (1.6) and so

¥{r)
¥ (r)

(v=m) > v(f&)' > ven, | | € (M#1) x|

on R\{0}.

Proof of Lemma 5. Throughout the computations to follow we will use the fact that if
p: R+ R is Lebesgue measurable and bounded, j(r) = frp(s)ds and w ¢ w"'(o,r:L1(n)),
then 3(w) ¢ w'*1(0,: L'(2)) ana ’

%E j(w) = p(w) %% a.e.
In particular, the above relation with p equal to the characteristic function of a null
set NcR (so 3 2 0) implies that %% (t,x) =0 a.e. on {(t,x):w(t,x) € N} .«

The above is well-known when L'(ﬁ) = R ., For the reader's convenience a proof for

of the Appendix. The general case follows by use of

this case is given in Lemma a.?1

Fubini‘’s theorem.

The main part of the proof of the lemma is the introduction of the function
- ¥(u)

(1.18) v tut +p o ()

where p € R is a parameter to be chosen, and the study of the equation satisfied by

v . Here and below, the subscript t denotes differentiation in t .

i

{0,=) for

It is first assumed that ¢ is locally Lipschitz on R for (i) and on

{(ii). (This is implied by the asgumptions if v = 1; if v = -1 we later

approximate ¢ by va.) Since u € w"m(O,T:L1(Q)), we have ¢(u) ¢ W1'1(0,T:L1(9))
and w(u)t - w'(u)ut « A8 B 18 linear and continuous (1.12) proves that u ¢
w2 Yo, 7M@)  ana
(1.19) Uy + Bly'(uluy) = 0.
Differentiating (1.18) we find
- l .
(1.20) Ve mu t+tu o+ PCTI (Ul .
Taken together, (1.19) and (1.20) imply
' - glu)

tv, + B(ty (u)v) 4+ G(ulv = pG(u) P
(1.21)
where G(r) = -p(f%T)'(r) + p=1




Set

{1 € >0 {0} r>0 %

signr = { [-1,1) re0 , signr= { (0,~1) x=0
1 (-1} € <0 (-1} c <0, 4
A selection out of signv means a measurable function a such that

a(x) ¢ signv(t,x) a.e. x, etc. To prove (i), multiply (1.21) by a selection out of

signv (which is a subset of sign¢¥’(u)v) and use the accretivity of B in L‘(n) to
conclude
| | .
T a Jetw) | N
(1.22) t o rf: Iv] +£ iGtu)|Ivl € Ip] {z Ietu) | 455755 |

bt id Wt

e

i

If we choose p = 2v/m the assumptions on ¢ imply

-

x)

2M
{1.23) 1< G(r) < s 119 ' (£)

< (M) x| &

The estimates (1.23) used in (1.22) and integration in time of the result ylelds

(1.24) e f vl + [5 [ Gt gvl ¢ 2 Bggeqy [F g g ¢ WU 4y,
Q [} nn 0 mz

Q Q

where the last inequality comes from the accretivity of By in L‘(Q) which implies

Tul is nonincreasing. From (1.24) we have 1

1
AM(M+1)
Ivl1 < mz Iuol1
i and this with the definition (1.18) of v implies T

01

4M(M+1) 2 fetw]  2(Me1) 2™
tlud, < 2 o t, + 2 rfz ooy ¢ T (1S,

whence the result.




e Pt a2z

€ B it o XG4

P

o S A

For (ii), we chose p = v/m which implies G(r) > 0 on (0,®). Then multiply (1.21)

by a selection out of vsign (vv) (which is a subset of v sign (v¢'(u)v)) and use (A3)

for B to conclude

d -
-t % é (ve) (t) >0 .

(u.)
since vv(0) -% :,(g ) > 0 , the above implies vv(t) » 0 . Recalling the definition
1]

(1.18) of v this implies

1 plu)

(1.25) vtu, > - 2 e (o) °
This implies vtw(u)t » =¢(u)/m which is equivalent to (vtvlnw(u) ,t 20 .

when ¢ is not locally Lipschitz on R (or (0,%) for (ii)) we approximate ¢ by
its Yosida approximation tﬂu and u by the w of (1.11). Unfortunately, ¢a need not

satisfy (1.4). Indeed, ¥ (r) =¢(y (r)) where Y (r) = (I+ag)” (r)

and so
( V;(r) =- W'(Ya(r))/H + aw'(Yu(x))) and

a 'Pa(r) ¢('la(r))¢"(7c(r))

—— = 1
L]
ar Vg lr) (" (v (212111 + ap* (v (2)))
It follows that if (1.4) holds, Gu is defined as in (1.21) with va in place of ¢ and

p = 2v/m then
d wa
(1.26) I 771 €1+M and |G (x)] ¢ 24/m .
Since va is Lipschite, computations leading to (1.22) are valid with L t Ue +

pvu(un)/va(uu) B Ga in place of u,v,G and integration together with (1.26) gives

t aM
(1.27) t é fvg | + £ £ G tu - lv | < = (1+M)tlugl .

By Lemma 4, Ut U, in L‘(o,'m.'(m). It also follows from (1.26) and u *u in
ctro,11en'(@))tnat ¢ (u)/0lu) + w(w/et(w) in L'(o,min'(R)). Hence v v in
t',me'@). since ¢ e c?(R /{0)) , G (r) converges to Glr) for r # 0 . Hence
Gc(“a) Ival (interpreted as 0 at points where L vanishes, since vy " 0 a.es on

{(t,x)ma(t,x) = 0}) converges to G(u)jv| in L‘(O,T:Lim)). Thus one may pass to the

limit in (1.27) to obtain the desired conclusion.
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To obtain (ii) we also approximate u by u, ags above, The estimates (1.26) need
not hold now, but since y/¢' ¢ c1([o,-]], (wa/v;)' and Ga remain locally bounded on
{0,2) uniformly in a . Hence the convergence assertions above remain valid and we can

pass to the limit in the inequality

d - - 1 - v le)
-t 3 £ (v ) - é G (u )(wv )" > - = é (G, fu )] 7§7;:7

which is deduced from the a-version of (1.21) with p = v/m as before. Since
G{u) » 0 , we then obtain that [ {vv)” is nondecreasing and finish as before.
Proof of Theorem 3: .
There are three gsteps of the proof remaining. We first show that if vy satisfies
(1.3) and (1.4), then it can be locally approximated by functions ¢, satisfying the

tBy -
. converges suitably to e tBY . fThen we

hypothesis of Lemma 5 in such a way that e-
show that By = (eI+AA)¢ converges to (€I+AW as A + 0 . Finally we deduce (1.5) as a
consequence of (1.16) in the various limits.

wWe know that (1.4) may be restated as the Lipschitz continuity of ¢/y' (entended as
zero on {y=0}) together with
(1.28) v-m > v(j%)' > veM ,

lLet g € C([0,%)) be of locally bounded variation, g(0) = 0 , and consider the

approximations 9, » D = 1,2, *** given by

(1.29) g (r) = T g(r) = n [Fe™* Vgig1as = g(r) - ften(s-t)dq(s)
0 0
so that
(1.30) g (r) = n [T &™ T Fag(s)
0

From (1.29) we see that Tn g is c1

and converges as n * @ uniformly to g on compact
sets. Moreover, if g is nondecreasing, then gn(r) is nondecreasing in r as well as
n and g, increases to g . Moreover, from (1.30) we see that 0 € g' € K implies

0 < g; <K . Set g(r) = (v-m)r - v¥(r)/v'(r) and define ¥y ©on (0,2) by

vwn/¢; = (vem)r - Tn q, ¢n(r‘) = W(r1), where r, is chogsen so that W(r,) >0 and

large enough for what comes later. Since

-]13=




¢;(-)

¢h(l)

r
¢(x) = #r) oxp£ ds ,

1

the above considaration imply that ¢, satisfies the assumptions of Lemma S (with the

same M and m as v ) and ¥, decreases (respectively, increases) to v on [0.:11 if

v = 1 (respectively, v = =1). We could likewise arrange that ¢, converge ’ i

(v=M)r = vp(r)/¢'(x)

monotonically to ¢ in the opposite sense by choosing g(r) =

{(which is nonincreasing), vn/w; = (veM)x - an. The analogous process is done on (-=,0)

to define v, on R so that ¥, converges monotonically to ¢ on (-ry,r4l.

Now, for f ¢ L'(ﬂ) with 1f1_ < L I let A >0 and v, be the solution of u, +

knvn(un) = f By Proposition 1{v) applied to B , l“nlp < lflp for p = \,m, Hence

is bounded in L1(0) and has its values in the interval for which n + ¥ (r) is
%n n

monotone. Since B~' is bounded, ¢ (u,) = X-1n-1(t - un) is also bounded in L‘(ﬂ).
Since n * wn(r) is monotone so is n + wn(un) (Lemma a.2 of the Appendix). Hence

wn(un) converges in L‘(n) and so does u, by continuity of B . Tha limit u clearly
~tBy
satisfies u + ABy(u) = £ . It follows from the convergence theorem that e -uo

[P

+ .-tswuo whenever Y € L‘(n), luol_ < Xy .

For the second step, let u,.u solve

u + (e1+Ax)w(u1) = f, u+ (eI+A)yp(u) = £ ,

respectively, where f ¢ L'(ﬂ) and ¢ ¢ Pb . Rewriting the second equation as

u+ (cI+AX)¢(u) =f + Axwtu) = A¢(u) and using this, the first equation and accretivity

e g e 1 AR Aoyt e

we find

Tu=u < lAlw(u) - Aw(u)l1 .

At
Since A is linear, densely defined and m-accretive, Axv +Av as XA + 0 for all v ¢

D(A) and we conclude that u, *u in L‘(Q) « Thus (eI+Ax)¢ + (eI+A)v.

Now let ¢ satisfy (1.3), (1.4) and uj € D((€I+AI¥). Choose wen'@ nrta

whose support is of finite measure so that ug + uy in L’(B) « With ¢, as above, we

3
fix j and let r > luol_ . Set

1



at

Since e nu&‘o
1

.-av“g ¢ '1,

-m“

H
{

' ? ety
: uniformly for bounded

3
0

Mow o \lo"

uwl. We may then send ¢ to 0 to find (1.5).

2x00f of Theorem 4.

above. The assumption (1.8) implies that

above, it is the increasing limit of C

construct Vn

any (o,r‘]. The rest is as above.

Por (1.10), if u 4is a solution of (1.12),

[ tu ) = [ (u
f t f t

by (A.3) applied to B, | u €0 . By (117
Q

- ) 1
[ w ct=-1z]fu
9 t n tn

1-m
Bence [ lu. | ¢ 2 5F lugl, and (1.10) follows.

du
', < EL:J!)- wh, .

(10,%):)(R)) Dby Lemma S, the above inequality is correct with ul) in

3
place of u,. Moreover, since t + % (t)l1 is nonincreasing, we have
3 -y h 3
fu’(t+h) = u (t)l1 < t c(-.n)lnol1 .
Rhiad™ o-muo a8 j + e, oo (1.31) holds with u =

The property (1.9) can be obtained from Lemma 6(ii) by successive approximations as
(v=m)T - wi(zr)/¢’'(x) is nondecreasing. As

1 nondecreasing functions on [0,*) and we can

satisfying the assumptions of Lewma 6(ii) converging monotonically to ¢ on

01

t and uj(t) -

-t(tx+l)¢“° in place of

we use that

+ z(ut) )

< (1;_-)% ‘{\.o .




Appendix

Proof of Proposition 2.

Let ¥ € PO and A satisfy the hypotheses of Proposition 2. We may

simply define Aw by

ge€ A\O(“) if IA >0 and £ ¢ L‘(ﬂ) such

that 1f u_= (I + A((c1+A)0)) 't then
limu = u and g-x-‘(t-u).

€
€40

To see that Aw extends A , observe that if u ¢ D(A¢), f£f = u + AA¢(u),

and u = (1+ Alez+a)v) " 't then

bu - ul =0 Aeraa)) " £ - (1 + a0 (g + ev ()l L
L L

< el p(u)l 3 + 0
L

so A V(g - u)* 2"V(f - u) = Ap(u). To see that Ay is accretive, set
c‘ = (cI+A)y for € > 0. Now if g € A«P“ ¢+ {as1) 4implies the existence of

u such that u_*u and Cu + g, i.6. A <clim inf C . But the
[ 4 € €€ ct0 €
limit inferior of a family of accretive operators is clearly accretive.

We next show R(I+aw) > L (m)*, u+uv)"z.'(m" cut@)t ana

(14 (ez+A)v) e o (1o 'e for A >0 and £ en'@t . This merely

requires showing that if A >0 , f ¢ L‘(n)* and u, solves

(a.2) u + A(cw(uc) + Av(u‘)) -t

then u, 0 and lim u_ exists. Now u, > 0 follows from Proposition 1,
€40

as does the estimate

(a.3) ln‘ + Xtﬂu')l1 - '“tl‘l + ltlw(\l¢)|1 < lfl1 .




. N

[

Moreover, we show that u, is nonincreasing in ¢ . This monotonicity and

the estimate (a.3) imply 1lim u exists. Indeed, if ¢ > n > ¢ we have
€40

{because N“e) »0)

u + X(nv(ue) + ”’(“s” = £ - (e - nw(us) <t

9, + A(nw(un) + Av(un)) =-f.

Now by Proposition 1, (I*A(nI+A)¢)-1 is order preserving and thus
u, < u .
Remark; It would be nice (especially below) if cv(u) + 0 in L'(), in
which case the current task would be guite simple., However, examples show
this to be false in general.
The final assertion of Proposition 2 has already been verified.

Ir] < I, + We now seek to

consider next the case in which |¢(r)| < X|zr] on

show that if u. solves (a.2) and £ ¢ L‘(Q) is arbitrary, then 1lim “c
ev0

exists. 8Since (I + A(cI+A)¢)-') is nonexpansive, it suffices to chooss ¢

from the dense set L1(0) n ﬂ-(ﬂ). Then '“e'- < If1_  and there is another

constant K; such that lg(z)l < x,lrl on |r| ¢ If1, . Hence w(ue) is

bounded in L'(Q) by Kdul, . Since (a.3) still holds, ev(u) + 0 in

L‘(n) and

tu, = ul = 1czenn T (emhevtu ) - (I+AA¢)-1(£-Anv(un))l1

[ n1

< X(lcw(u‘)I' + '“w(“n"l)

so u is Cauchy in L‘(R) a8 € + 0 . The case measfl < = is similar,

since then cv(ut) + 0 in L.(n) implies the convergence in L'(n).

The above proof shows that Aw is the closure of A in these

Remark:
A =0 we have an example where Av * Ay

cases. With {0 = R, ¢(r) = r’,
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The remaining case is the one in which ¢ is strictly monotone. Again

let £ € x.’m) n I..(ﬂ) and u, solve (a.2)., Let Uy Yo solve
v
v, * “w‘"cv) + Aw(uw)) =vf ,vm= g,

By the order preserving properties, “t- < ue < U, Moreover, by the first

case treated above, u,, converges monotonically as ¢ + 0 to u v € L'(Q)

and so u_« u < U . Therefore, by the dominated convergence theorem, it is

enough to show that for § > 0

lim uou{lue - unl > 8§} = 0.
€,n*0

8ince u c'“n are bounded and ¢ is strictly monotone, there is a yu > 0

such that ““c - unl > 8} ¢ {Iv(uc) -w(un)l > u} . Now
(“c - un) + XA(v(ue) - w(un)) - (vw(u“) - cv(ue)) .
Let p(r) =1 if rd>u, p(r) =-1 if r <~y and p(r) =0 if

Jr|] € uw + Multiply the above by p(w(u:) - v(un)), integrate, and use

(A.3) to conclude

o, ~ul < / () ~ ev(u)
{Ivtu )-etu )1>u} € " (Iw(ue)-ﬂ(un)lw} n € |

Now let K > 0 be such that ““s' unl >k} 2 {Iv(ue) - v(u“)l > u} . There

is such a «x Dbecause vy is continuous. We have, by the above,
12
K-ou(lv(ut) - w(un)l > u} ¢ thetu ) - colu )1, uns{lw(uc) - w(u“) > u}’e,

But w(n:) is bounded in L’(Q) and tends to zero in L () . Thus
tiu) + 0 fn tPi@), 1 < p < = and we conclude that

m.('tﬂ(“‘) - w(u")l > u} and so ual{lut-\:nl > §}) tends to zero as
¢,n+ 0, thus completing the proof.

Remarks:

7 (a) We do not know if (1 + M(:I«’-A)w).1 converges as ¢ + 0 for

every v ¢ P, .




(8) The definition of A, is consistent with known examples. One important
case is I = RF and A = =-A . The construction of [3] coincides with ours

when Proposition 2 applies, however in (3] precise information on the domain

of A, is obtained and more general ¢'s are permitted.

(4
lemma a.1. Let p: R+ R be Lebesgue measurable, bounded and j(r) =
["p(sras. ret wew'e V0,7 L'@). Then 3Itw) e w'vlo,TinVian)

a:d

(a.4) = 3w = W)Y ace.

Proof. Let us treat the case L’(O) = R. Then the general case follows by
using Fabini's theorem and looking directly at 1lim (j(w(t+h)) - j(w(t)))/h.

h+0
One has to prove

(2.5) [Ty ey wienae = [T ye)plwit)wi(t)at v v e cge0,T)
0 0

with the proof demonstrating the measurability of p(w)w' so that the
equation has a meaning. Notice that if (a.4) holds for a sequence (p,.jy,)

in place of (p,j) and p, converges boundedly everywhere to p , then (a.5)
holds for (p,j).

The relation (a.5) is obvious if p is continuous. If O 4is open in R
and p 1is the characteristic function Xo of O, then p is the increasing
limit of continuous functions. Hence (a.5) holds with p = Xg *

If NS R is a null set, then there is a decreasing sequence o, of
open sets such that O > N and meag0 =+ 0. Let N' = no, so that
- lim xo is the decreasing limit of characteristic functions of open

n n
sets. By the above remarks, (a.5) holds with j =0 and p = Xygr ¢ 8o

Xygo

o= x“,(w)w' a.e. and w' =0 a.e. on {te (0,T):w(t) ¢ Nc N'}
If E< (0,T) is measurable, then there exists a decreasing seguence

O, of open sets such that O, > E and meas(% o, \E} = 0 . Set

n

B' = 2 0n + We have, by the above remarks, xE,(w)w' - xs(w)w' +

xl'\z(')'. - xE(v)w' a.e, and the validity of (a.5) for p = Xg implies




the validity for Xg * Since any bounded measurable function is the uniform

limit of a sequence of simple functions the proof is complete.
Lemma 2.2, Let B be linear, densely defined and satisfy (A.1), (A2). Let
Y.V € Po and ¢(r) » y(r) for all r . Let u e D(B¢), v € D(By) and

u + Byp(u) = v + BY(v).

Then ¢(u) > ¥(v) .

Proof. We have

(a.6) u = v+ Ble(u) = y(v)) =0 .
Set

-1 if vlu(x)) < p(vix))
pix) =
0 otherwise .

Then pi{x) ¢ B(g{u(x)) = p(v(x)) where

{0} if r>0o0
B(xr) = [0,1] if r=0
{o} if r<o .

Moreover, (u - vip(¢(u) = Y(v)) = lu = vl on {e(u) < p(Vv)} by the
monotoninity of ¢ and v2> ¢ , while (u = v)p(g(u) = ¥(v)) > 0 .
Multiplying (a.6) by p(e¢(u) - $(u)) and integration with the use of (A.3)

yields

) lu ~vi<o
{elu) < piv)}
80 ¢(u) 2 Y(v).

Remark: If it is known that ful _, vl _ < r, and y¢(r) » y(r) holds for
L L

lr) € r1 we clearly have the same conclusion.

; -20-
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